Monday, September 29, 2025
Home Electric Cars Fire Protection Materials for Electric Vehicle Batteries 2023-2033: IDTechEx

Fire Protection Materials for Electric Vehicle Batteries 2023-2033: IDTechEx

1. EXECUTIVE SUMMARY 1.1. What are fire protection materials? 1.2. Thermal runaway and fires in electric vehicles 1.3. Battery fires and related recalls (automotive) 1.4. Automotive fire incidents: OEMs and causes 1.5. EV fires compared to ICEs 1.6. The impact of solid-state batteries 1.7. regulations 1.8. Automotive market share of cell types 1.9. Thermal runaway in cell to pack 1.10. Fire protection materials: main categories 1.11. Material comparison 1.12. Density vs thermal conductivity – thermally insulating 1.13. Density vs thermal conductivity – cylindrical cell systems 1.14. Material intensity (kg/kWh) 1.15. Pricing comparison in a battery (inter-cell) 1.16. Pricing comparison in a battery (pack level) 1.17. Material market shares 1.18. Market shares in 2022 and 2032 1.19. Cell-level fire protection materials forecast (mass) 1.20. Pack level fire protection materials forecast (mass) 1.21. Total fire protection materials forecast (mass) 1.22. Total fire protection materials forecast (value) 1.23. Total fire protection materials by vehicle (value) 1.24. Company profiles 2. INTRODUCTION 2.1.1. Thermal runaway and fires in EVs 2.2. Fires and recalls in EVs 2.2.1. Battery fires and related recalls (automotive) 2.2.2. GM’s Bolt recall 2.2.3. Hyundai Kona recall 2.2.4. VW PHEV recall 2.2.5. Ford Kuga PHEV recall 2.2.6. Automotive fire incidents: OEMs and causes 2.2.7. Electric scooter fires in India 2.2.8. Electric bus fires 2.2.9. EV fires compared to ICEs 2.2.10. Severity of EV fires 2.2.11. EV fires: when do they happen? 2.3. Causes and stages of thermal runaway 2.3.1. Causes of failure 2.3.2. The nail penetration test 2.3.3. Stages of thermal runaway 2.3.4. Cell chemistry and stability 2.3.5. Thermal runaway propagation 2.3.6. The impact of solid-state batteries 2.4. regulations 2.4.1. regulations 2.4.2. China 2.4.3. Europe 2.4.4. U.S 2.4.5. India 2.4.6. What does it all mean for EV battery design? 3. CELL AND PACK DESIGN 3.1.1. Cell types 3.1.2. Which cell format to choose? 3.1.3. Automotive market share of cell types 3.1.4. Differences between cell, module, and pack 3.1.5. What’s in a battery module? (pouch/prismatic) 3.1.6. What’s in a battery module? (cylindrical) 3.1.7. What’s in an EV battery pack? 3.2. Cell to pack, cell to chassis, and large cell formats 3.2.1. What is cell to pack? 3.2.2. Drivers and challenges for cell-to-pack 3.2.3. What is cell to chassis/body? 3.2.4. Gravimetric energy density and cell-to-pack ratio 3.2.5. Outlook for cell-to-pack & cell-to-body designs 3.2.6. Thermal runaway in cell to pack 3.2.7. Material intensity changes in cell to pack 4. FIRE PROTECTION MATERIALS 4.1. Introduction 4.1.1. What are fire protection materials? 4.1.2. Thermally conductive or thermally insulating? 4.1.3. Fire protection materials: main categories 4.1.4. Composition and application of each material category 4.1.5. Advantages and disadvantages 4.1.6. Market maturity, OEM use-cases, and suppliers 4.1.7. Material comparison 4.1.8. Material market shares 4.1.9. Market shares in 2022 and 2032 4.2. Material benchmarking: thermal, electrical, and mechanical properties 4.2.1. Thermal conductivity comparison 4.2.2. density comparison 4.2.3. Density vs thermal conductivity – thermally insulating 4.2.4. Density vs thermal conductivity – cylindrical cell systems 4.2.5. Dielectric strength comparison 4.2.6. Fire protection temperature comparison 4.2.7. Material intensity (kg/kWh) 4.3. Material benchmarking: costs 4.3.1. Pricing comparison: volumetric and gravimetric 4.3.2. Pricing comparison in a battery (inter-cell) 4.3.3. Pricing comparison in a battery (pack level) 4.4. Ceramics and other nonwovens 4.4.1. Ceramic blankets/papers 4.4.2. alkegen 4.4.3. Morgan Advanced Materials 4.5. Mica 4.5.1. Mica sheets 4.5.2. Elmelin 4.5.3. Von Roll 4.6. aerogels 4.6.1. Why aerogels? 4.6.2. aerogels 4.6.3. Historic uptake 4.6.4. Aspen Aerogels 4.6.5. JIOS airgel 4.6.6. Notable new entrants 4.6.7. SAIC/GM: Aerogels 4.7. coatings 4.7.1. Coatings (intumescent and other) 4.7.2. handle 4.7.3. Parker Lord 4.7.4. PPG 4.7.5. Sika 4.8. Encapsulants (excluding foams) 4.8.1. Encapsulants/potting 4.8.2. DEMAK – resin potting for batteries 4.8.3. ELANTAS 4.8.4. epoxies, etc. 4.8.5. huntsman 4.8.6. Von Roll 4.9. Encapsulating foams 4.9.1. Foams 4.9.2. Asahi Kasei – Cell Holder Foams 4.9.3. CHT Silicones 4.9.4. Dow Silicones 4.9.5. Elkem 4.9.6. HB Fuller 4.9.7. HB Fuller 4.9.8. Parker Lord 4.9.9. Zotefoams – Nitrogen Foam 4.10. Compression pads with fire protection 4.10.1. Compression pads 4.10.2. dow 4.10.3. Rogers Corporation 4.10.4. Rogers Corporation 4.10.5. Saint Gobain 4.11. Phase change materials 4.11.1. Phase change materials (PCMs) 4.11.2. Phase change materials – players 4.11.3. PCMs – players in EVs 4.11.4. AllCell (Beam Global) 4.11.5. PCMs – use-case and outlook 4.12. tape 4.12.1. Tapes for fire protection 4.12.2. ATP Adhesive Systems 4.12.3. Avery Denison 4.12.4. Rogers 4.13. Other fire protection materials 4.13.1. Alternate thermal barriers 4.13.2. 3M – thermal barriers 4.13.3. ADA Technologies 4.13.4. AOK Technology 4.13.5. Armacell 4.13.6. Covestro – flame retardant plastics 4.13.7. DuPont-Nomex 4.13.8. HB Fuller – flame-resistant pack seal 4.13.9. HeetShield – ultra-thin insulations 4.13.10. KULR Technology – NASA’s solution 4.13.11. ITW Formex 4.13.12. LG Chem – flame retardant material 4.13.13. svt Group 4.14. Summary 4.14.1. Fire protection materials outlook 5. IMMERSION COOLING FOR EV BATTERIES 5.1. Immersion cooling: introduction 5.2. Immersion cooling fluid requirements 5.3. Players: immersion fluids for EVs (1) 5.4. Players: immersion fluids for EVs (2) 5.5. Immersion fluids: density and thermal conductivity 5.6. Immersion fluids: summary 5.7. SWOT analysis: immersion cooling for EVs 5.8. What does it mean for fire protection materials? 6. FIRE PROTECTION MATERIAL USE CASES 6.1. Use cases: automotive 6.1.1. Faraday Future FF91 6.1.2. Ford Mustang Mach-E 6.1.3. Hyundai E-GMP 6.1.4. Jaguar I-PACE 6.1.5. MG ZS 6.1.6. Mercedes EQS 6.1.7. Mercedes GLC300e PHEV 6.1.8. polestar 6.1.9. Rivian 6.1.10. Tesla 4680 pack 6.1.11. Tesla Model 3/Y 6.1.12. Tesla Model 3/Y prismatic LFP pack 6.1.13. Tesla Model S P85D 6.1.14. Tesla Model S plaid 6.1.15. VW MEB platform 6.2. Use cases: heavy duty and commercial vehicles 6.2.1. Ford Transit 6.2.2. Lion Electric – self-extinguishing modules 6.2.3. Nissan e-NV200 6.2.4. Romeo Power 6.2.5. Voltabox 6.2.6. xerotech 6.2.7. XING Mobility 6.3. Use cases: other 6.3.1. Cadenza Innovation – stationary energy storage 6.3.2. Hero Maxi (lead acid) 6.3.3. Ola Hyperdrive battery 7. BATTERY PACK ENCLOSURES 7.1. Impact of enclosure material on fire protection 7.2. Lightweight battery enclosures 7.3. From steel to aluminum 7.4. Towards composite enclosures? 7.5. Multi-material battery enclosures 7.6. EMI shielding for composite enclosures 7.7. UL standard for battery enclosures 7.8. SABIC: fire retardant battery enclosure 8th. FORECASTS 8.1. EV battery demand forecast (GWh) 8.2. Methodology: material intensity 8.3. Methodology: cell formats 8.4. Cell-level fire protection materials forecast (mass) 8.5. Pack level fire protection materials forecast (mass) 8.6. Total fire protection materials forecast (mass) 8.7. Materials pricing 8.8. Total fire protection materials forecast (value) 8.9. Fire protection materials forecast by vehicle type (mass) 8.10. Total fire protection materials by vehicle (value) 9. COMPANY PROFILES 9.1. Von Roll 9.2. FOX 9.3. Axalta 9.4. Cadenza innovation 9.5. Johnson Controls 9.6. XING Mobility 9.7. ADA Technologies 9.8. xerotech 9.9. e Mersiv 9.10. KULR Technology 9.11. engineered fluids 9.12. Solvay Specialty Polymers 9.13. Armacell 9.14. JIOS airgel 9.15. SABIC 9.16. handle 9.17. Aspen Aerogels 9.18. Asahi Kasei 9.19. Parker Lord 9.20. Elkem 9.21. Romeo Power 9.22. Beam Global/AllCell 9.23. Rogers Corporation
RELATED ARTICLES

Most Popular

Recent Comments