| 1. |
EXECUTIVE SUMMARY |
| 1.1. |
What are fire protection materials? |
| 1.2. |
Thermal runaway and fires in electric vehicles |
| 1.3. |
Battery fires and related recalls (automotive) |
| 1.4. |
Automotive fire incidents: OEMs and causes |
| 1.5. |
EV fires compared to ICEs |
| 1.6. |
The impact of solid-state batteries |
| 1.7. |
regulations |
| 1.8. |
Automotive market share of cell types |
| 1.9. |
Thermal runaway in cell to pack |
| 1.10. |
Fire protection materials: main categories |
| 1.11. |
Material comparison |
| 1.12. |
Density vs thermal conductivity – thermally insulating |
| 1.13. |
Density vs thermal conductivity – cylindrical cell systems |
| 1.14. |
Material intensity (kg/kWh) |
| 1.15. |
Pricing comparison in a battery (inter-cell) |
| 1.16. |
Pricing comparison in a battery (pack level) |
| 1.17. |
Material market shares |
| 1.18. |
Market shares in 2022 and 2032 |
| 1.19. |
Cell-level fire protection materials forecast (mass) |
| 1.20. |
Pack level fire protection materials forecast (mass) |
| 1.21. |
Total fire protection materials forecast (mass) |
| 1.22. |
Total fire protection materials forecast (value) |
| 1.23. |
Total fire protection materials by vehicle (value) |
| 1.24. |
Company profiles |
| 2. |
INTRODUCTION |
| 2.1.1. |
Thermal runaway and fires in EVs |
| 2.2. |
Fires and recalls in EVs |
| 2.2.1. |
Battery fires and related recalls (automotive) |
| 2.2.2. |
GM’s Bolt recall |
| 2.2.3. |
Hyundai Kona recall |
| 2.2.4. |
VW PHEV recall |
| 2.2.5. |
Ford Kuga PHEV recall |
| 2.2.6. |
Automotive fire incidents: OEMs and causes |
| 2.2.7. |
Electric scooter fires in India |
| 2.2.8. |
Electric bus fires |
| 2.2.9. |
EV fires compared to ICEs |
| 2.2.10. |
Severity of EV fires |
| 2.2.11. |
EV fires: when do they happen? |
| 2.3. |
Causes and stages of thermal runaway |
| 2.3.1. |
Causes of failure |
| 2.3.2. |
The nail penetration test |
| 2.3.3. |
Stages of thermal runaway |
| 2.3.4. |
Cell chemistry and stability |
| 2.3.5. |
Thermal runaway propagation |
| 2.3.6. |
The impact of solid-state batteries |
| 2.4. |
regulations |
| 2.4.1. |
regulations |
| 2.4.2. |
China |
| 2.4.3. |
Europe |
| 2.4.4. |
U.S |
| 2.4.5. |
India |
| 2.4.6. |
What does it all mean for EV battery design? |
| 3. |
CELL AND PACK DESIGN |
| 3.1.1. |
Cell types |
| 3.1.2. |
Which cell format to choose? |
| 3.1.3. |
Automotive market share of cell types |
| 3.1.4. |
Differences between cell, module, and pack |
| 3.1.5. |
What’s in a battery module? (pouch/prismatic) |
| 3.1.6. |
What’s in a battery module? (cylindrical) |
| 3.1.7. |
What’s in an EV battery pack? |
| 3.2. |
Cell to pack, cell to chassis, and large cell formats |
| 3.2.1. |
What is cell to pack? |
| 3.2.2. |
Drivers and challenges for cell-to-pack |
| 3.2.3. |
What is cell to chassis/body? |
| 3.2.4. |
Gravimetric energy density and cell-to-pack ratio |
| 3.2.5. |
Outlook for cell-to-pack & cell-to-body designs |
| 3.2.6. |
Thermal runaway in cell to pack |
| 3.2.7. |
Material intensity changes in cell to pack |
| 4. |
FIRE PROTECTION MATERIALS |
| 4.1. |
Introduction |
| 4.1.1. |
What are fire protection materials? |
| 4.1.2. |
Thermally conductive or thermally insulating? |
| 4.1.3. |
Fire protection materials: main categories |
| 4.1.4. |
Composition and application of each material category |
| 4.1.5. |
Advantages and disadvantages |
| 4.1.6. |
Market maturity, OEM use-cases, and suppliers |
| 4.1.7. |
Material comparison |
| 4.1.8. |
Material market shares |
| 4.1.9. |
Market shares in 2022 and 2032 |
| 4.2. |
Material benchmarking: thermal, electrical, and mechanical properties |
| 4.2.1. |
Thermal conductivity comparison |
| 4.2.2. |
density comparison |
| 4.2.3. |
Density vs thermal conductivity – thermally insulating |
| 4.2.4. |
Density vs thermal conductivity – cylindrical cell systems |
| 4.2.5. |
Dielectric strength comparison |
| 4.2.6. |
Fire protection temperature comparison |
| 4.2.7. |
Material intensity (kg/kWh) |
| 4.3. |
Material benchmarking: costs |
| 4.3.1. |
Pricing comparison: volumetric and gravimetric |
| 4.3.2. |
Pricing comparison in a battery (inter-cell) |
| 4.3.3. |
Pricing comparison in a battery (pack level) |
| 4.4. |
Ceramics and other nonwovens |
| 4.4.1. |
Ceramic blankets/papers |
| 4.4.2. |
alkegen |
| 4.4.3. |
Morgan Advanced Materials |
| 4.5. |
Mica |
| 4.5.1. |
Mica sheets |
| 4.5.2. |
Elmelin |
| 4.5.3. |
Von Roll |
| 4.6. |
aerogels |
| 4.6.1. |
Why aerogels? |
| 4.6.2. |
aerogels |
| 4.6.3. |
Historic uptake |
| 4.6.4. |
Aspen Aerogels |
| 4.6.5. |
JIOS airgel |
| 4.6.6. |
Notable new entrants |
| 4.6.7. |
SAIC/GM: Aerogels |
| 4.7. |
coatings |
| 4.7.1. |
Coatings (intumescent and other) |
| 4.7.2. |
handle |
| 4.7.3. |
Parker Lord |
| 4.7.4. |
PPG |
| 4.7.5. |
Sika |
| 4.8. |
Encapsulants (excluding foams) |
| 4.8.1. |
Encapsulants/potting |
| 4.8.2. |
DEMAK – resin potting for batteries |
| 4.8.3. |
ELANTAS |
| 4.8.4. |
epoxies, etc. |
| 4.8.5. |
huntsman |
| 4.8.6. |
Von Roll |
| 4.9. |
Encapsulating foams |
| 4.9.1. |
Foams |
| 4.9.2. |
Asahi Kasei – Cell Holder Foams |
| 4.9.3. |
CHT Silicones |
| 4.9.4. |
Dow Silicones |
| 4.9.5. |
Elkem |
| 4.9.6. |
HB Fuller |
| 4.9.7. |
HB Fuller |
| 4.9.8. |
Parker Lord |
| 4.9.9. |
Zotefoams – Nitrogen Foam |
| 4.10. |
Compression pads with fire protection |
| 4.10.1. |
Compression pads |
| 4.10.2. |
dow |
| 4.10.3. |
Rogers Corporation |
| 4.10.4. |
Rogers Corporation |
| 4.10.5. |
Saint Gobain |
| 4.11. |
Phase change materials |
| 4.11.1. |
Phase change materials (PCMs) |
| 4.11.2. |
Phase change materials – players |
| 4.11.3. |
PCMs – players in EVs |
| 4.11.4. |
AllCell (Beam Global) |
| 4.11.5. |
PCMs – use-case and outlook |
| 4.12. |
tape |
| 4.12.1. |
Tapes for fire protection |
| 4.12.2. |
ATP Adhesive Systems |
| 4.12.3. |
Avery Denison |
| 4.12.4. |
Rogers |
| 4.13. |
Other fire protection materials |
| 4.13.1. |
Alternate thermal barriers |
| 4.13.2. |
3M – thermal barriers |
| 4.13.3. |
ADA Technologies |
| 4.13.4. |
AOK Technology |
| 4.13.5. |
Armacell |
| 4.13.6. |
Covestro – flame retardant plastics |
| 4.13.7. |
DuPont-Nomex |
| 4.13.8. |
HB Fuller – flame-resistant pack seal |
| 4.13.9. |
HeetShield – ultra-thin insulations |
| 4.13.10. |
KULR Technology – NASA’s solution |
| 4.13.11. |
ITW Formex |
| 4.13.12. |
LG Chem – flame retardant material |
| 4.13.13. |
svt Group |
| 4.14. |
Summary |
| 4.14.1. |
Fire protection materials outlook |
| 5. |
IMMERSION COOLING FOR EV BATTERIES |
| 5.1. |
Immersion cooling: introduction |
| 5.2. |
Immersion cooling fluid requirements |
| 5.3. |
Players: immersion fluids for EVs (1) |
| 5.4. |
Players: immersion fluids for EVs (2) |
| 5.5. |
Immersion fluids: density and thermal conductivity |
| 5.6. |
Immersion fluids: summary |
| 5.7. |
SWOT analysis: immersion cooling for EVs |
| 5.8. |
What does it mean for fire protection materials? |
| 6. |
FIRE PROTECTION MATERIAL USE CASES |
| 6.1. |
Use cases: automotive |
| 6.1.1. |
Faraday Future FF91 |
| 6.1.2. |
Ford Mustang Mach-E |
| 6.1.3. |
Hyundai E-GMP |
| 6.1.4. |
Jaguar I-PACE |
| 6.1.5. |
MG ZS |
| 6.1.6. |
Mercedes EQS |
| 6.1.7. |
Mercedes GLC300e PHEV |
| 6.1.8. |
polestar |
| 6.1.9. |
Rivian |
| 6.1.10. |
Tesla 4680 pack |
| 6.1.11. |
Tesla Model 3/Y |
| 6.1.12. |
Tesla Model 3/Y prismatic LFP pack |
| 6.1.13. |
Tesla Model S P85D |
| 6.1.14. |
Tesla Model S plaid |
| 6.1.15. |
VW MEB platform |
| 6.2. |
Use cases: heavy duty and commercial vehicles |
| 6.2.1. |
Ford Transit |
| 6.2.2. |
Lion Electric – self-extinguishing modules |
| 6.2.3. |
Nissan e-NV200 |
| 6.2.4. |
Romeo Power |
| 6.2.5. |
Voltabox |
| 6.2.6. |
xerotech |
| 6.2.7. |
XING Mobility |
| 6.3. |
Use cases: other |
| 6.3.1. |
Cadenza Innovation – stationary energy storage |
| 6.3.2. |
Hero Maxi (lead acid) |
| 6.3.3. |
Ola Hyperdrive battery |
| 7. |
BATTERY PACK ENCLOSURES |
| 7.1. |
Impact of enclosure material on fire protection |
| 7.2. |
Lightweight battery enclosures |
| 7.3. |
From steel to aluminum |
| 7.4. |
Towards composite enclosures? |
| 7.5. |
Multi-material battery enclosures |
| 7.6. |
EMI shielding for composite enclosures |
| 7.7. |
UL standard for battery enclosures |
| 7.8. |
SABIC: fire retardant battery enclosure |
| 8th. |
FORECASTS |
| 8.1. |
EV battery demand forecast (GWh) |
| 8.2. |
Methodology: material intensity |
| 8.3. |
Methodology: cell formats |
| 8.4. |
Cell-level fire protection materials forecast (mass) |
| 8.5. |
Pack level fire protection materials forecast (mass) |
| 8.6. |
Total fire protection materials forecast (mass) |
| 8.7. |
Materials pricing |
| 8.8. |
Total fire protection materials forecast (value) |
| 8.9. |
Fire protection materials forecast by vehicle type (mass) |
| 8.10. |
Total fire protection materials by vehicle (value) |
| 9. |
COMPANY PROFILES |
| 9.1. |
Von Roll |
| 9.2. |
FOX |
| 9.3. |
Axalta |
| 9.4. |
Cadenza innovation |
| 9.5. |
Johnson Controls |
| 9.6. |
XING Mobility |
| 9.7. |
ADA Technologies |
| 9.8. |
xerotech |
| 9.9. |
e Mersiv |
| 9.10. |
KULR Technology |
| 9.11. |
engineered fluids |
| 9.12. |
Solvay Specialty Polymers |
| 9.13. |
Armacell |
| 9.14. |
JIOS airgel |
| 9.15. |
SABIC |
| 9.16. |
handle |
| 9.17. |
Aspen Aerogels |
| 9.18. |
Asahi Kasei |
| 9.19. |
Parker Lord |
| 9.20. |
Elkem |
| 9.21. |
Romeo Power |
| 9.22. |
Beam Global/AllCell |
| 9.23. |
Rogers Corporation |